A
DISTRIBUTION STATEMENT
Approved for Public Release
Distribution Unlimited

Technical Note
CMU/SEI-2003-TN-030

Carnegie Mellon
Software Engineering Institute

A Template for Documenting
Prediction-Enabled Component
Technologies

Paulo Merson
October 2003

Predictable Assembly from Certifiable
Components Initiative

20031202 096

Unlimited distribution subject to the copyright

Technical Note
CMU/SEI-2003-TN-030

A Template for Documenting
Prediction-Enabled Component
Technologies

Paulo Merson
October 2003

Predictable Assembly from Certifiable
Components Initiative

Unlimited distribution subject to the copyright

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2003 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative wotks.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

ADSEFACL......cceeeeeeeeeeeermrreennesorsnsnssnsneesssssnsans eeessessamssnensnenenereensaraesasaneanensansrnnn vii
LR [4o 1o 11T (o Y 1
LS T o To 10 G B ¢ 1T = 1T o To] « GO 1
11,1 ODJECHVE ..oeeeereeerecccreeee e s e 1
1.1.2 Organizationcccceerrercirceeenieccrnenineeresescescssnnessssssnesssessnseses 2
2 Guidelines for Documenting PECTScccccceercnnniinnissssssssmmesasessiesenssansssnensans 3
3 Template'for a PECT Technical Reference Guideccccueensemmncnsncnnranaass 5
3.1 Introduction (Section 1 of the Technical Reference Guide).................... 7
3.2 Construction Framework (Section 2 of the Technlcal Reference
€ 11T 1=) R N 7
3.2.1 Component Technology (Section 2.1 of the Technical
Reference GUIde)cccovrineiiiiiicririirccrcc e 7
3.2.2 Constraints (Section 2.2 of the Technical Reference Guide)...... 8
3.2.3 Required Properties (Section 2.3 of the Technical Reference
€ T 1o [TR 9
3.3 Reasoning Framework — Name (Sections 3, 4, etc., of the Technical
Reference GUIdE).......cooceiiiieiieccniiinenncii e 10
3.3.1 Property Theory Concepts (Section 3.1 of the Technical
Reference GUIdE)cccceveeeeeiieieciiciiineiinicneeessssssssneseneessssens 11
3.3.2 Interpretation (Section 3.2 of the Technical Reference
{10 1o (=) R PP 12
3.3.3 Prediction (Section 3.3 of the Technical Reference Guide)...... 12
3.3.4 Validation Procedure (Section 3.4 of the Technical Reference
GUIAE) .. eereeceeerirecrerecreneeee e e s sreeesesse s e s sseesessneesssssnssnassssnnens 13
3.3.5 Reasoning Framework Infrastructure (Section 3.5 of the
Technical Reference Guide) sersmsstseessntsesansessessnssesananes 14
3.3.6 Results and Conclusions (Section 3.6 of the Technical
Reference GUIE)cuevveereecmniniiiiereernrrcee e 14
3.4 Examples (Appendix of the Technical Reference Guide)..................... 15
3.5 References (of the Technical Reference Guide)ccccccevevvcvrvrrernennenn. 15
4 Template for a PECT User’s Guide..........cccesmrrerrrescccrnsscnmsansrassnnesssassasssens 16

CMU/SEI-2003-TN-030 i

5 Future Work

References

CMU/SEI-2003-TN-030

List of Figures

Figure 1: Logical Structure of PECTcoouimmiineninnseitcrestnnccnincsennnne 4
Figure 2: PECT Technical Reference Guide Template........cccocoveeeiniinniininnininnnnnns 6
Figure 3: PECT User’s Guide Templatecceeeeiiiniiniiieiniiiecncrenenennssinanns 17
CMU/SEI-2003-TN-030 i

CMU/SEI-2003-TN-030

List of Tables

Table 1: Example of Required Propertycceeeeierinciinivniiiccnennnen,

Table 2: Example of Required Property for Performance Reasoning..................

Table 3: Technical Reference Guide and User’s Guide Compared

CMU/SE!-2003-TN-030

vi

CMU/SEI-2003-TN-030

Abstract

Prediction-enabled component technology (PECT) is an approach to predicting the behavior
of systems built from components with known properties. An important artifact produced by
the PECT development process is the documentation of the technologies, tools, and theories
as integral elements of the PECT, as well as the results and conclusions of the application of
the PECT to a group of systems. This report suggests a template for documenting a PECT.
The report also provides guidelines and a few examples to help PECT developers consolidate
the broad range of information produced in the PECT development process into a single,
organized volume.

CMU/SEI-2003-TN-030 vii

viii

CMU/SEI-2003-TN-030

1 Introduction

The Predictable Assembly from Certifiable Components (PACC) Initiative at the Software
Engineering Institute (SEI) investigates the technology and methods for reliably predicting
the runtime behavior of assemblies of components from their certifiable properties. Our
approach to achieving predictable assemblies from certifiable components is based on the
development of prediction-enabled component technologies (PECTs).

A PECT comprises a construction framework and one or more reasoning frameworks
[Wallnau 03a]. The construction framework is associated with a specific component
technology, which provides the means to construct assemblies. A reasoning framework is
based on a computational theory and is used to analyze the behavior of the assemblies with
respect to specific runtime properties.

Two previous applications of the PECT approach have been documented [Hissam 01, Hissam
02a]; a third, larger, application is under development. Based on previous experience, it
became clear that the wide spectrum of information necessary to document a PECT should be
captured in a standard, easy-to-reference format.

1.1 About This Report

1.1.1 Objective

The goal of this report is to provide a template for documenting a PECT, with instructions
and examples that should help a PECT developer to capture all the relevant information about
the construction framework and reasoning frameworks involved.

Wallnau lays out the key concepts and precepts that govern the development of a PECT
[Wallnau 03a). This report is complementary in the sense that it provides a format for
compiling all the information involved in an actual PECT.

As described by Hissam, different stakeholders perform different activities in the PECT
development process [Hissam 02b]. Specialized roles for a team of PECT developers include
PECT designer, component technology specialist, analysis specialist, and PECT validator. All
of these roles contribute to the PECT documentation, each one being responsible for different
sections. The developers themselves use the documentation, along with all the other artifacts
produced in the development of the PECT, to evolve or reuse that PECT.

CMU/SEI-2003-TN-030 1

A separate class of stakeholders, the PECT users, is also interested in the PECT description.
They need much less information (for example, users are not concerned with interpretation or
the details of the decision or validation procedures). The template and guidelines in this
report address the needs of both PECT developers and PECT users.

1.1.2 Organization

Section 2 provides some general guidelines for documenting a PECT. Section 3 presents the
template for a PECT Technical Reference Guide, which is the documentation by and for
PECT developers. Each subsection corresponds to a section of that guide. Section 4 describes
how to create a PECT User’s Guide, which is a simplified version of the documentation that
is suitable for PECT users. Finally, Section 5 presents plans for future work and related

activities.

2 CMU/SEI-2003-TN-030

2 Guidelines for Documenting PECTs

The development of a PECT involves the application of diversified expertise (e.g., assembly
development, runtime environment configuration, behavioral modeling and analysis,
statistical validation) and produces a tremendous amount of information. It is vital to capture
the essential information produced in an effective way.

When documenting a PECT, a developer should follow the general guidelines below:

e Use colloquial and clear language to communicate with the reader; avoid long, cluttered
sentences.

e Be objective and succinct.

- Assume the reader is familiar with the concepts behind predictable assembly from
certifiable components. As a rule of thumb, assume the reader is familiar with the key
technical concepts of PECT [Wallnau 03a]. In particular, the reader should understand
the elements and relations of a PECT as pictured in Figure 1.

- Do not try to explain the computational theory used in the reasoning frameworks.
Assume the reader has the requisite basic knowledge or provide references.

- When needed, use bulleted or numbered lists, tables, and pictures rather than narrative,
text to make the documentation easier to understand and faster to read.

e Make extensive use of examples. If an example describes a specific situation and there is
a possible variation that is relevant, create another example to describe it. In the template,
examples are placed in a separate section, so the number of examples should not affect
the readability of the explanatory sections of the document.

e It is imperative that the PECT documentation be maintained under some sort of version
or content management, so that changes are controlled, inconsistencies are avoided and
the history of changes can be retrieved when necessary. The PECT documentation
consolidates pieces of information produced by various players in the PECT development
process. Therefore, it is likely that the contents will be created incrementally in a very
dynamic fashion. '

e If you are not completely sure about the validity of an assertion in the documentation—
perhaps because it is something that will be decided later—record it anyway. However,
use a question mark (““?”’) or some other symbol to indicate that the point must still be
clarified. Later, you can search for question marks and remove them, or restate the points
as appropriate.

e Where possible, use the terminology associated with the Construction and Composition
Language (CCL). CCL provides the means to express structural, behavioral, and

CMU/SEI-2003-TN-030 3

analysis-specific information, and is used to create specifications of components,
assemblies, and runtime environments [Wallnau 03b]. CCL permeates most of the work
in the development of a PECT and provides a common vocabulary for communicating

ideas.

As more PECTs are documented, it is likely and desirable that the template itself will

evolve to incorporate new ways to organize information. Propose modifications to the
template if you encounter deficiencies in the current version. The PACC Initiative at the

SEI fosters the improvement of all artifacts related to PECT development.

Construction

Framework

Reasoning
Framework

Component
Technology

Component
Model

Abstract
Component
Technology

(language: CCL)

Automated
Reasoning
Procedure

uses

Runtime
Environment

Property Theory

Computational
Theory

Figure 1: Logical Structure of PECT

CMU/SEI-2003-TN-030

3 Template for a PECT Technical Reference Guide

The Technical Reference Guide is a single volume that contains all the relevant technical
information about a PECT. It is created, maintained, and used by PECT developers. Detailed
descriptions of each section and subsection that should compose the Technical Reference
Guide of a PECT are presented in sections 3.1 through 3.5 of this report. Note that Section
3.1 of this report corresponds to Section 1 of the Technical Reference Guide, Section 3.2.2
corresponds to Section 2.2 of the guide, Section 3.3.3.1 corresponds to Section 3.3.1 of the
guide, and so on.

Each version of the Technical Reference Guide will contain a title and revision notice that
uniquely identify the document. Revision information may include a version number and a
list of modifications containing the date, description, and author. If the document is
maintained by a version control system, revision history information can be retrieved from
the version control tool.

Additional sections and subsections may be included in the Technical Reference Guide to
provide information not covered in the template. For instance, other appendices might be
added as needed.

Figure 2 outlines the template for a PECT Technical Reference Guide. A PECT consists of a
construction framework and one or more reasoning frameworks. Each reasoning framework
is documented in a separate section (3, 4, etc.) using the same template.

CMU/SEI-2003-TN-030 5

Template for a PECT Technical Reference Guide

Table of Contents
List of Figures
List of Tables
1. Introduction
2. Construction Framework
2.1 Component Technology
2.2 Constraints
2.2.1 Constructive Constraints
2.2.2 Analytic Constraints — XXX
2.2.3 Analytic Constraints — YYY

2.3 Required Properties

2.3.1 Properties Required for Construction

2.3.2 Required Properties — XXX
2.3.3 Required Properties — YYY

3. Reasoning Framework XXX
3.1 Property Theory Concepts
3.2 Interpretation
3.3 Prediction
3.3.1 Predicted Properties
3.3.2 Decision Procedure
3.4 Validation Procedure
3.5 Reasoning Framework Infrastructure
3.6 Results and Conclusions
4, Reasoning Framework YYY
4.1 Property Theory Concepts

Appendix — Examples

References

Figure 2: PECT Technical Reference Guide Template (“XXX” and “YYY” represent

the name of the reasoning frameworks)

CMU/SEI-2003-TN-030

3.1 Introduction (Section 1 of the Technical Reference Guide)

The introduction section provides the motivation and goals of this PECT, as well as the
context in which it was developed (e.g., research investigation, software development
project). Many of the goals and requirements of a PECT can be expressed in terms of the
properties that it can predict. Summarize them here and point the reader to Section 3.3.1 (and
4.3.1, 5.3.1, etc.) of the Technical Reference Guide where the predicted properties are
described in full detail.

Give the key characteristics that distinguish this PECT, without further details. For example,
a PECT that has a reasoning framework that is suitable for performance analysis may be
characterized as supporting aperiodic tasks using sporadic server, tasks with variable
execution time, distribution using an Ethernet local area network, asynchrony, and blocking.
If the PECT has an acronym or a name that follows a naming convention that is related to key
properties, explain the PECT designation. For example, in “Aspa,” “ABA” stands for
“average case latency,” “blocking,” and “asynchrony,” and lambda represents “latency”
[Hissam 02a].

Describe very briefly the reasoning frameworks used by this PECT. You can simply indicate
the theories used and what they are used for.

Comment about the relationship of this PECT with other PECTs, or the relationship of the
reasoning frameworks in this PECT with other reasoning frameworks that were or will be
developed. For example, indicate if the present work is an evolution from previous work, or
if it is part of a “roadmap” that defines a planned series of PECTs.

3.2 Construction Framework (Section 2 of the Technical
Reference Guide)

This section of the Technical Reference Guide describes the component technology and
runtime environment, specifies the constraints that apply in construction, and identifies the
properties required from construction elements.

3.2.1 Component Technology (Section 2.1 of the Technical Reference Guide)

Identify and briefly describe the software component technology used to build components in
this PECT. Characterize the component model: the application programming interfaces
(APIs) that can be used, constraints imposed on the implementation of components,’ the

These refer to well-formedness rules imposed by the original component model (for example, the
Enterprise JavaBeans (EJB) component model establishes that the session bean class of a stateless
session bean must have a public constructor that takes no parameters [Sun 01]). In addition to
constraints inherent to the component model, the PECT will impose other constraints that are
described in Section 2.2 of the Technical Reference Guide.

CMU/SEI-2003-TN-030 7

deployment process, the life cycle of components at runtime, and other characteristics.
Describe the key characteristics of the runtime environment that is used to deploy and test
assemblies, including the interaction mechanisms (for example, inter-thread communication,
inter-process communication, signals) and services provided by the runtime environment. At
the implementation level, indicate any reference components (a skeleton of components or
super classes) that are available for deriving new components, as well as library components
or services that can be used to create assemblies. Point the reader to bibliographical
references where detailed documentation about the component technology can be found.

A component technology can be described in terms of a component model and a component
runtime environment [Bachmann 00]. These two elements could be explained in separate
subsections. However, we perceive that the pieces of information that characterize the
component model and the runtime environment are highly interconnected and it is more

practical to describe both in the same section.

3.2.2 Constraints (Section 2.2 of the Technical Reference Guide)

This subsection lists the constraints that apply to the creation of assemblies for this PECT,
excluding the constraints that are innate to the component model—that is, constraints that
apply to any system that uses that component model. The constraints in this subsection are
specific to this PECT and are divided into constructive and analytic constraints. Wallnau has
written about the distinction between constructive and analytic constraints [Wallnau 03a].
Some constraints may refer to the required properties defined in Section 2.3 of the Technical

Reference Guide.

3.2.2.1 Constructive Constraints (Section 2.2.1 of the Technical Reference Guide)

Specify here the constraints that are imposed on assemblies so that they can be effectively
constructed—that is, compiled, linked, deployed, and executed. All assemblies should meet
the constructive constraints, regardless of the reasoning framework that is used to analyze

those assemblies.

The constraints should be described in a way that guides the creation of a CCL
specification—that is, they should provide the well-formedness rules for the characterization
of pins, reactions, runtime services, gateways, and CCL elements [Wallnau 03b]. For
example, if you want to point out that every component in a system must be invoked by some
other component or activated by a clock, you could write “all components in an assembly
shall have at least one sink pin that interacts with the source pin of another component or a

clock.”

3.2.2.2 Analytic Constraints - Reasoning Framework (Sections 2.2.2, 2.2.3, etc. of
the Technical Reference Guide)

Specify here the analytic constraints that are imposed by a specific reasoning framework to
ensure that the assembly is analyzable. Use CCL terms for analytic constraints; for example,

8 CMU/SEI-2003-TN-030

“the mean value of the interarrival interval between messages sent to the sink pin of a
sporadic server component shall be greater than the replenishment period of that component.”

In the title of the subsection, indicate the reasoning framework to which the constraints apply.
Thus, if there are two or more reasoning frameworks in the PECT, there will be more than
one “Analytic Constraints” section. Number them sequentially and use a name that
designates the reasoning framework; for example,

2.2.2 Analytic Constraints — Performance
2.2.3 Analytic Constraints — Model Checking
2.2.4 Analytic Constraints — Reliability

3.2.3 Required Properties (Section 2.3 of the Technical Reference Guide)

List here the properties that are required from components used in this PECT. The first
subsection gives the properties required from all assemblies, regardless of the reasoning
frameworks that are used to énalyze them. In the subsequent subsections, the properties
demanded by specific reasoning frameworks are specified.

3.2.3.1 Properties Required for Construction (Section 2.3.1 of the Technical
Reference Guide)

A required property is necessarily associated with a constructive element through a CCL
property annotation. For each property, indicate the referent element, a property name, a
range of valid values and, if applicable, the units of measure. The information can be
presented in the form of a table, such as the one shown in Table 1. The first row reflects the
fact that a clock (a runtime service) must be configured with a predefined period value;
otherwise it cannot be instantiated by the runtime.

A property is an n-tuple, that is, a property name can be associated with one or more values,
and each value can have a different format and range. The second row in Table 1 is an
example of a multi-valued property that is the period of a special type of clock called a
random clock, which generates pulses at variable intervals.

The value of some properties (for example, execution time of a reaction) results from a
certification process that uses empirical or formal evidence to obtain a certain level of trust.
Other properties are simply configurable parameters of the components (for example, the
period of a clock). As appropriate, you may indicate which properties pertain to each
category.

CMU/SEI-2003-TN-030 9

Table 1: Example of Required Property

Referent Property Name Valid Values ' Unit
Clock source pin period Positive integer millisecond
Random clock randomPeriod e Positive integer for mean value ¢ millisecond
source pin
¢ Positive integer for standard deviation e millisecond
e Name of the distribution to be used e string
(“exponential,” “uniform,” or “poisson”)

3.2.3.2 Required Properties — Reasoning Framework (Sections 2.3.2, 2.3.3, etc., of
the Technical Reference Guide)

List here the additional properties that are required by a given reasoning framework. Again,
these are properties that are annotated in the CCL specification and can be described here in a
table format. Table 2 shows an example.

Table 2: Example of Required Property for Performance Reasoning

Referent Property Name Valid Values Unit
Reaction fixedExecutionTime | e Real number for the mean e millisecond
e Real number for standard deviation e millisecond

In the title of the subsection, indicate the reasoning framework with a name. If there are two
or more reasoning frameworks in the PECT, create multiple subsections numbered

sequentially; for example,

2.3.2 Required Properties — Performance
2.3.3 Required Properties — Model Checking
2.3.4 Required Properties — Reliability

3.3 Reasoning Framework — Name (Sections 3, 4, etc., of the
Technical Reference Guide)

This section of the Technical Reference Guide describes a specific reasoning framework,
presenting the property theory concepts and describing interpretation, prediction, and the
validation procedure.

10 CMU/SEI-2003-TN-030

Use the name or designation of the reasoning framework in the title of the section. If there are
two or more reasoning frameworks in the PECT, create multiple sections numbered
sequentially. Subsections of each reasoning framework section are numbered accordingly; for
example,

3 Reasoning Framework — Performance

3.1 Property Theory Concepts

4 Reasoning Framework — Model Checking
4.1 Property Theory Concepts

5 Reasoning Framework — Reliability

5.1 Property Theory Concepts

3.3.1 Property Theory Concepts (Section 3.1 of the Technical Reference
Guide)

Use this subsection to explain the technical terms that are used in the reasoning framework,
associating them to PECT concepts and construction elements as necessary. Besides prose,
another possible format is a glossary that lists the terms and gives short descriptions. Do not
try to describe concepts in full detail; provide the reader with minimal information about the
concepts and terminology used in that reasoning framework, and use bibliographical
references to complement that information.

In addition to the definition of key terms, use this subsection to explain concepts and
procedures that are peripheral to the reasoning framework (e.g., if your validation procedure
uses Monte Carlo simulation, you may want to use this subsection to explain what that is).
More than in other parts of the Technical Reference Guide, this subsection requires you to
write from the reader’s point of view. That demands careful reflection about who readers are
and why they are reading the document. The reader can be a PECT developer, who is a
specialist in one area and contributes a part of the document but also needs to read and
understand the parts he or she did not write. The reader can be a PECT developer who will
create a new PECT based on an old one; he or she will rely on the documentation of the old
PECT to reuse artifacts and reapply concepts. In any case, assume that readers have basic
knowledge about the computational theory and use common sense to discern the right
amount of information to provide here.

CMU/SEI-2003-TN-030 1

3.3.2 Interpretation (Section 3.2 of the Technical Reference Guide)

Describe how elements in a CCL specification are mapped to elements in the property theory.
In particular, list how properties of construction elements map to element attributes in the
post-interpretation model. For instance, a reaction (specified in CCL) may translate to a
subtask in a performance analysis reasoning framework, and the “execution time” property of
a reaction (specified in a CCL property annotation) may translate to the “execution time”
property of the subtask in the reasoning framework. A table with the construction elements in
one column and the reasoning framework elements in the other is an appropriate format,
although the relation is not always one to one.

An interpretation must provide an unambiguous (and automated) translation from a well-
formed assembly specified in CCL to the correspondent, analyzable model in the property
theory. Thus, a desirable piece of documentation is the syntax-directed translation, which
specifies, for each syntactic production, semantic rules in terms of actions on syntactic
elements and their properties.

Explain the algorithms and transformations used in the interpretation. They should reflect the
actual code written for interpretation, which follows the syntax-directed translation but may
also include some preprocessing, rewrite rules, and optimizations. Pseudocode is a suitable
format for presenting the key parts of the algorithms.

An efficient way to explain what interpretation does is to provide examples of the translation
of entire assemblies specified in CCL into elements in the property theory. Therefore, make
use of examples that illustrate various situations and configurations. (Examples should be in
the appendix of the Technical Reference Guide.)

3.3.3 Prediction (Section 3.3 of the Technical Reference Guide)

This subsection lists the properties that the reasoning framework can predict and describes
the decision procedure used to generate the predictions.

3.3.3.1 Predicted Properties (Section 3.3.1 of the Technical Reference Guide)

List the properties that this reasoning framework can predict. Here you should explain what
each property means rather than give predicted values for some execution of the prediction.
Defer the presentation of actual results to Section 3.6 of the Technical Reference Guide.
Indicate whether the predicted property is a claim that evaluates to true or false, or is a
quantifiable measure, in which case you should describe units of measure and desired

accuracy.

In general, a reasoning framework can provide a prediction for any well-formed assembly,
but in some cases, a property can be predicted only if the assembly possesses some specific
characteristics. For example, a given performance reasoning framework may predict the

12 CMU/SEI-2003-TN-030

probability of queue overflow only when the assembly contains aperiodic tasks that process a
FIFO queue. Use this subsection to document any relation of that nature. Also note situations
where a predicted property is derived from another predicted property.

3.3.3.2 Decision Procedure (Section 3.3.2 of the Technical Reference Guide)

Describe the automated procedure used to generate the predictions. Use pseudocode, state
diagrams, UML diagrams, or other symbology that clarifies how the decision procedure
operates.

Characterize the decision procedure as being analytic, simulation based, or hybrid. Analytic
decision procedures are often strongly associated with formulae and algorithms in the
property theory. Describe here such formulae and algorithms and how they are adapted and
combined in the context of this reasoning framework.

3.3.4 Validation Procedure (Section 3.4 of the Technical Reference Guide)

Discuss the rationale for the choice of property theory and decision procedure. Then, provide
the reasons for trust in the validity of the predictions provided by the reasoning framework. If
predicted results are compared against well-defined measures obtained through direct
observation, describe how this empirical evidence is used to achieve confidence in the results.
Also, explain what is required to achieve statistical trust.

If predicted results are obtained through mathematical proof, they are irrefutable in principle.
Nevertheless, it is important to comment on the level of confidence in which the decision
procedure and the tools used to generate predictions are held.

Present the reasons for trusting that the specification of an assembly in CCL is a valid
abstraction of the actual assembly implementation. Explain how construction rules and
constraints are verified. Also, if applicable, describe why interpretation, as defined in Section
3.2 of the Technical Reference Guide, is correct.

Use this section to describe how validation is performed rather than to present actual
validation results. In Section 3.6 of the Technical Reference Guide, the prediction results are
presented along with validation data (e.g., statistical analysis).

A separate issue in the validation is the confidence in the required properties of components
(i.e., certification). The goal of a PECT is not to establish trust in certified properties, so you
do not need to explain here how component properties were certified.

CMU/SEI-2003-TN-030 13

3.3.5 Reasoning Framework Infrastructure (Section 3.5 of the Technical
Reference Guide) '

Describe the infrastructure that was built to support the reasoning framework. Provide a short
user guide to the tools and artifacts involved in the generation and validation of results,
indicating filenames, parameters, scripts, input and output artifacts, and other elements.
Include a flowchart or activity diagram that depicts the sequence of steps needed to produce
assemblies with validated predictions from certified components.

It is likely that diverse kinds of tools and processes will be required by different reasoning
frameworks, so the contents of this subsection may vary significantly and may or may not
include the following:

e tools used in the decision procedure, either off the shelf or developed specifically for this
reasoning framework

e measurement infrastructure, comprising instrumentation APIs and other artifacts used to
collect empirical evidence

e statistical analysis tools

e assembly-generation tool, in case a representative sample of assemblies is created
automatically ’

e simulation tools

e parsers, compilers, and interpretation translators

3.3.6 Results and Conclusions (Section 3.6 of the Technical Reference Guide)
Report the results of applying this PECT to a specific set of assemblies—a sample space.
Define the validation goal used to determine whether results were successful. In the case of
empirical validation, the goal is typically expressed in nominal statistical tolerance intervals.
Characterize the assemblies used to produce the results and tell why they were chosen.
Present all findings and/or nominal results of the experiment in the most appropriate format,
which may include measures, execution traces, and other findings. Consolidate the results
and analyze them to produce final conclusions.

This subsection is optional in the sense that a PECT can be developed and documented
without a specific set of assemblies in mind. In fact, the PECT can be applied to a different
set of assemblies, producing different results and conclusions. In that case, this subsection
should be subdivided accordingly; for example,

3.3.6.1 Results and Conclusions — Assemblies in Set 4,

3.3.6.1 Results and Conclusions — Assemblies in Set .4,

3.36.1 ...

14 CMU/SEI-2003-TN-030

3.4 Examples (Appendix of the Technical Reference Guide)

Identify and describe all examples used in the Technical Reference Guide. Rather than
inserting partial examples in various sections, consider creating more complete examples in
this section, and then add references to them in the appropriate parts of the document.

Typically this section would present examples of CCL specifications of assemblies, along
with the results of interpretation and prediction for those assemblies.

3.5 References (of the Technical Reference Guide)

A reasoning framework makes use of a computational theory that is probably a body of
knowledge fully documented in books and papers. Likewise, there may be books, manuals,
and Web pages about the component technology used in the construction framework. In this
section, list the bibliographical entries that were used as sources of information in the
development of the PECT.

In addition to simply listing a title, provide comments explaining which chapters, sections, or
pages are most relevant with respect to this reasoning framework, what specific information
was obtained from that reference, and other helpful comments.

CMU/SEI-2003-TN-030 15

4 Template for a PECT User’s Guide

The Technical Reference Guide described in Section 3 encompasses information produced
and used by PECT developers. It gives details that may not be relevant or easily understood
by the users of a PECT. If the PECT is going to be made available to users that are not part of
the PECT development team, a separate document should be produced to bundle the
information that describes the basics of the PECT, how it is used, and the benefits and results

that it can produce.

The structure of the PECT User’s Guide is similar to the Technical Reference Guide, but the
contents should reflect the different needs and background of PECT users and developers. In
particular, a PECT user is less interested in the mechanisms used to generate predictions—
that is, the theory behind a reasoning framework and how it is applied to components and
assemblies. Furthermore, if the PECT comprises two or more reasoning frameworks, it is
probably more practical from the user’s perspective to produce two or more user’s guides,
one for each reasoning framework. That way, each reasoning framework appears as a
separate product that can be applied independently.

Figure 3 shows the template for the PECT User’s Guide. The guidelines presented in Section
3 of this report can be used at large in the creation of the corresponding sections of that guide,
keeping in mind the characteristics of the readers of the two documents. Table 3 lists side by
side the sections in the Technical Reference Guide and in the User’s Guide, with comments
about noticeable differences.

16 ' CMU/SEI-2003-TN-030

Template for a PECT User’s Guide

Table of Contents .
List of Figures
List of Tables
1. Introduction
2. Construction Framework

2.1 Component Technology

2.2 Constraints

2.3 Required Properties
3. Reasoning Framework XXX

3.1 Property Theory Concepts

3.2 Predicted Properties

3.3 Validation Procedure

3.4 Reasoning Framework Infrastructure

3.5 Results and Conclusions
Appendix ~ Examples
References

Figure 3: PECT User's Guide Template (“XXX” and “YYY” represent the name of
the reasoning frameworks)

Table 3: Technical Reference Guide and User's Guide Compared

Section of the Section of the Comment

Technical Reference Guide User’s Guide

1. Introduction 1. Introduction similar, but omitting details of the
development of the PECT in the
User’s Guide

2. Construction Framework 2. Construction Framework similar

2.1 Component Technology 2.1 Component Technology similar

2.2 Constraints 2.2 Constraints The Constraints section of the
User’s Guide should present the

. . constructive and analytic

2.2.1 Constructive Constraints constraints together. For a PECT
user, the distinction is not

2.2.2 Analytic Constraints — important.

Reasoning Framework

CMU/SEI-2003-TN-030 17

2.3 Required Properties

2.3.1 Properties Required for
Construction

2.3.2 Required Properties —
Reasoning Framework

2.3 Required Properties

The Required Properties section of
the User’s Guide should list
together the properties required for
construction and required by the
reasoning framework. For the
PECT user, the distinction is less
relevant.

3. Reasoning Framework

3. Reasoning Framework

A PECT user is less interested in
details of the reasoning framework
and more interested in the results it
can produce. Therefore, this section
and its subsections in the User’s
Guide will be much simpler than in
the Technical Reference Guide.

3.1 Property Theory Concepts

3.1 Property Theory Concepts

In the User’s Guide, document only
the concepts that are relevant to a
PECT user, such as concepts
reflected in the required properties

or predicted properties.

3.2 Interpretation N/A The User’s Guide should not
describe interpretation.

3.3 Prediction 3.2 Predicted Properties In the User’s Guide, listed simply

3.3.1 Predicted Properties

3.3.2 Decision Procedure

list the predicted properties in
Section 3.3.1 of the Technical
Reference Guide.

3.4 Validation Procedure

3.3 Validation Procedure

The PECT user may be interested
in the reasons for trusting the
predicted results. Therefore, in the
User’s Guide, describe the aspects
of validation that may concern a
PECT user. In addition, you may
use the validation of actual results
as a reason for trust.

3.5 Reasoning Framework

3.4 Reasoning Framework

In the User’s Guide, emphasize the

Infrastructure Infrastructure instructions on the tools that the
PECT user has to execute to
perform prediction.

3.6 Results and Conclusions 3.5 Results and Conclusions similar

Examples Examples In the User’s Guide, create
examples that illustrate the use of
the PECT.

References References similar

Table 3: Technical Reference Guide and User's Guide Compared (cont.)

18

CMU/SEI-2003-TN-030

5 Future Work

This report represents our current best thinking regarding a complete and structured model
for documenting a PECT. It is the result of our experience with PECTs. Our objective now is
to apply the template in current and future PECT developments. The process, as well as
concepts and even terminology, is rapidly evolving in this initial stage of the technology. The
Technical Reference Guide and the User’s Guide are core artifacts produced by the PECT
process and we, as PECT developers, will review the process and its artifacts every time it is

performed.

The Technical Reference Guide template is currently being applied to document PECTs that
contain performance reasoning frameworks and are being developed in the context of the
robotics model problem investigation for ABB Ltd.

We expect that the consolidated PECT documentation to be produced in the near future will
provide not only insight to enhance the template, but also comprehensive examples to PECT
developers who use the template.

CMU/SEI-2003-TN-030 ' 19

20

CMU/SEI-2003-TN-030

References

[Bachmann 00] Bachmann, F; Bass, L.; Buhman, C.; Comella-Dorda, S.; Long, F.; Robert,
1.; Seacord, R.; & Wallnau, K. Volume I1: Technical Concepts of
Component-Based Software Engineering, 2nd Edition (CMU/SEI-2000-
TR-008, ADA379930). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2000. <http://www.sei.cmu.edu/publications
/documents/00.reports/00tr008.html>.

[Hissam 01] Hissam, S.; Moreno, G; Stafford, J.; & Wallnau, K. Packaging Predictable
Assembly with Prediction-Enabled Component Technology (CMU/SEI-
2001-TR-024, ADA3399793). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2001. <http://www.sei.cmu.edu
/publications/documents/O1.reports/01tr024.html>.

[Hissam 02a] Hissam, S.; Hudak, J.; Ivers, J.; Klein, M.; Larsson, M.; Moreno, G;
Northrop, L.; Plakosh, D.; Stafford, J.; Wallnau, K.; & Wood, W.
Predictable Assembly of Substation Automation Systems: An Experiment
Report, Second Edition (CMU/SEI-2002-TR-031, ADA411970).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2002.
<http://www.sei.cmu.edu/publications/documents/02.reports
/02tr031.html>.

[Hissam 02b] Hissam, S. & Ivers, J. PECT Infrastructure: A Rough Sketch (CMU/SEI-
2002-TN-033, ADA413548). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2002. <http://www.sei.cmu.edu
/publications/documents/02.reports/02tn033.html>.

[Sun 01] Sun Microsystems. Enterprise JavaBeans Specification, Version 2.0. Palo
Alto, CA: Sun Microsystems, August 14, 2001.

[Wallnau 03a] Wallnau, K. Volume III: A Technology for Predictable Assembly from
Certifiable Components (CMU/SEI-2003-TR-009). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports
/03tr009.htmi>.

CMU/SEI-2003-TN-030 ’ 21

[Wallnau 03b] Wallnau, K. & Ivers, J. Snapshot of CCL: A Language for Predictable
Assembly (CMU/SEI-2003-TN-025). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2003.
<http://www.sei.cmu.edu/publications/documents/03.reports
/03tn025.html>.

22 CMU/SEI-2003-TN-030

REPORT DOCUMENTATION PAGE OAE N 0704-0168

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headgquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORTDATE 3. REPORT TYPE AND DATES COVERED
(Leave Blank) September 2003 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Template for Documenting Prediction-Enabled Component F19628-00-C-0003
Technologies

6. AUTHOR(S)
Paulo Merson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Carnegie Mellon University CMU/SEI-2003-TN-030
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
HQ ESC/XPK REPORT NUMBER
5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT 12B DISTRIBUTION CODE
Unclassified/Unlimited, DTIC, NTIS

13. ABSTRACT (MAXIMUM 200 WORDS)
Prediction-enabled component technology (PECT) is an approach to predicting the behavior of systems built
from components with known properties. An important artifact produced by the PECT development process is
the documentation of the technologies, tools, and theories as integral elements of the PECT, as well as the
results and conclusions of the application of the PECT to a group of systems. This report suggests a template
for documenting a PECT. The report also provides guidelines and a few examples to help PECT developers
consolidate the broad range of information produced into the PECT development process in a single,
organized volume.

14. SUBJECT TERMS 15. NUMBER OF PAGES
prediction-enabled component technology, PECT, predictable 32
assembly from certifiable components, PACC, software development,
software components

16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATIONOF | 20. LIMITATION OF ABSTRACT
OF REPORT THIS PAGE ABSTRACT UL

Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 296-102

